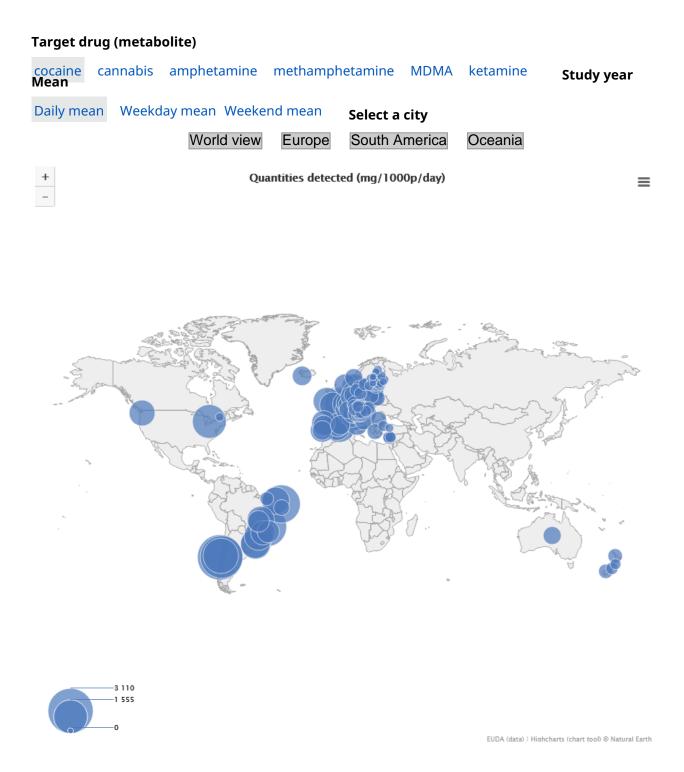


Wastewater analysis and drugs — a European multi-city study

Introduction

The analysis of municipal wastewater for drugs and their metabolic products to estimate community consumption is a developing field, involving scientists working in different research areas, including analytical chemistry, physiology, biochemistry, sewage engineering, spatial epidemiology and statistics, and conventional drug epidemiology. This page presents the findings from studies conducted since 2011. Data from all studies can be explored through an interactive tool, and a detailed analysis of the findings of the most recent study, in 2024, is presented.


See our <u>wastewater analysis hub page</u> for more resources on this topic.

Page last updated: 19 March 2025

Data explorer

Please note that due to the large amount of data involved processed on this page, it may take some moments before all content appears.

In this section you can explore the data from the most recent study in 2024, as well as from previous studies. Each study reveals a picture of distinct geographical and temporal patterns of drug use across European cities. Clicking on a symbol in the graph or the map will show more detailed information for a given wastewater treatment plant. You can also select a site from the drop-down menu.

Notes

- **Cocaine** is detected through its metabolite benzoylecgonine (BE) and **cannabis** through its metabolite THC-COOH.
- Please see the notes in the <u>Source data section</u>, which include general notes, substance-specific notes, as well as city-specific remarks.

• Because of the size of the data-set, this data explorer may be slow or unresponsive. If this is the case, we recommend trying another browser such as FireFox, Safari or Chrome.

Analysis: results from a European multi-city study

The findings of the largest European project to date in the emerging science of wastewater analysis are presented in this section. The project analysed wastewater in around 128 European cities and towns (hereinafter referred to as 'cities') to explore the drug-taking habits of those who live in them. The results provide a valuable snapshot of the drug flow through the cities involved, revealing marked geographical variations.

Wastewater analysis is a rapidly developing scientific discipline with the potential for monitoring real-time data on geographical and temporal trends in illicit drug use. Originally used in the 1990s to monitor the environmental impact of liquid household waste, the method has since been used to estimate illicit drug consumption in different cities (Daughton, 2001; van Nuijs et al., 2011; Zuccato et al., 2008). It involves sampling a source of wastewater, such as a sewage influent to a wastewater treatment plant. This allows scientists to estimate the quantity of drugs consumed by a community by measuring the levels of illicit drugs and their metabolites excreted in urine (Zuccato et al., 2008).

Wastewater testing in European cities

In 2010, a Europe-wide network (Sewage analysis CORe group — Europe (SCORE)) was established with the aim of standardising the approaches used for wastewater analysis and coordinating international studies through the establishment of a common protocol of action. The first activity of the SCORE group was a Europe-wide investigation, performed in 2011 in 19 European cities, which allowed the first ever wastewater study of regional differences in illicit drug use in Europe (Thomas et al., 2012). That study included the first intercalibration exercise for the evaluation of the quality of the analytical data and allowed a comprehensive characterisation of the major uncertainties of the approach (Castiglioni et al., 2014). Following the success of this initial study, comparable studies were undertaken over the following years, covering 128 cities and 26 countries in the European Union, Norway and Türkiye in 2024. A standard protocol and a common quality control exercise were used in all locations, which made it possible to directly compare illicit drug loads in Europe over a one-week period during 10 consecutive years (van Nuijs et al., 2018). Raw 24-hour composite samples were collected during a single week between March and May 2024 in the majority of the cities. These samples were analysed for the urinary biomarkers (i.e. measurable characteristics) of the parent drug (i.e. primary substance) for amphetamine, methamphetamine, ketamine and MDMA. In addition, the samples were analysed for the main urinary metabolites (i.e. substances produced when the body breaks drugs down) of cocaine and cannabis, which are benzoylecgonine (BE) and THC-COOH (11-nor-9-carboxy-delta9-tetrahydrocannabinol).

The specific metabolite of heroin, 6-monoacetylmorphine, has been found to be unstable in wastewater. Consequently, the only alternative is to use morphine, although it is not a specific biomarker and can also be excreted as a result of therapeutic use. This underlines the importance of collecting the most accurate figure for morphine use from prescription and/or sales reports.

Patterns of illicit drug use: geographical and temporal variation

2024 key findings

The project findings revealed distinct geographical and temporal patterns of drug use across European cities (see the <u>data explorer</u>).

The annual SCORE wastewater sampling presented here, from 128 cities, showed that, overall, the loads of the different stimulant drugs detected in wastewater in 2024 varied considerably across study locations, although all illicit drugs investigated were found in almost every city that participated.

The BE loads observed in wastewater indicate that cocaine use remains highest in western and southern European cities, in particular in cities in Belgium, the Netherlands and Spain. Low levels were found in the majority of the eastern European cities, although the most recent data continues to show signs of increase.

The loads of amphetamine detected in wastewater varied considerably across study locations, with the highest levels being reported in cities in the north and east of Europe, as in previous years. Amphetamine was found at much lower levels in cities in the south of Europe, although with the most recent data showing some signs of increase. The highest loads were found in cities in Sweden, Germany, Norway, Belgium and the Netherlands.

Methamphetamine use, generally low in most cities and historically concentrated in Czechia and Slovakia, was also present in the Netherlands, Belgium, Finland, Türkiye, Croatia and Spain. The observed methamphetamine loads in the other locations were very low, although most recent data show signals of increases in central European cities.

The highest mass loads of MDMA were found in the wastewater in cities in Belgium, Czechia, the Netherlands and Portugal.

The highest mass loads of the cannabis metabolite THC-COOH were found in wastewater in cities in Spain, the Netherlands, Norway and Portugal.

For ketamine, the highest mass loads were found in the wastewater in cities in Belgium, the Netherlands, Hungary and Norway.

Eighteen countries participating in the 2024 monitoring campaign included two or more study locations (Austria, Belgium, Croatia, Cyprus, Czechia, Denmark, Germany, Finland, Italy, Lithuania, the Netherlands, Norway, Portugal, Spain, Slovakia, Slovenia, Sweden and Türkiye). The study highlighted differences in most common substances detected between these cities within the same country, which may be explained in part by the different social and demographic characteristics of the cities (universities, nightlife areas and age distribution of the population). Interestingly, in the majority of countries with multiple study locations, no marked differences were found when comparing large cities to smaller locations for all substances, with the exception for cocaine with the loads (amounts of BE found in a location per 1000 people) being higher in larger cities.

In addition to geographical patterns, wastewater analysis can detect fluctuations in weekly patterns of illicit drug use. More than three quarters of cities show higher loads of BE, ketamine and MDMA in wastewater during the weekend (Friday to Monday) than during weekdays. In contrast, amphetamine, cannabis (THC-COOH) and methamphetamine use was found to be distributed more evenly over the whole week.

Seventy-six cities have participated in at least five of the annual wastewater monitoring campaigns since 2011. This allows for time trend analysis of drug consumption based on wastewater testing.

Cannabis

Cannabis is Europe's most commonly used illicit drug, with an estimated 22.8 million last year users. National surveys of cannabis use would suggest that overall, around 8 % of European adults (22.8 million aged 15 to 64) are estimated to have used cannabis in the last year. However, both the level of use and trends in use reported in recent national data appear heterogeneous (EMCDDA, 2024).

In wastewater, cannabis use is estimated by measuring its main metabolite, THC-COOH, which is the only suitable biomarker found so far. Although it is excreted in a low percentage and more research is still needed (Causanilles et al., 2017a), it is commonly used to report on cannabis use in the literature (Zucatto et al., 2016; Bijlsma et al., 2020).

The THC-COOH loads observed in wastewater indicate that cannabis use was highest in southern and central European cities, in particular in cities in Spain, the Netherlands, Portugal, but also cities in Norway. In 2024, there were diverging trends among the 51 cities with previous data: 13 cities reported an increase in THC-COOH loads in wastewater samples, while 25 a decrease and 13 remain stable.

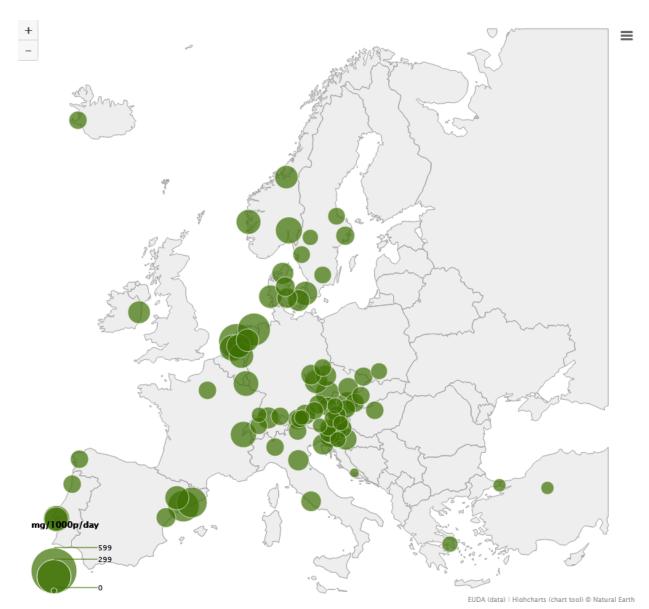
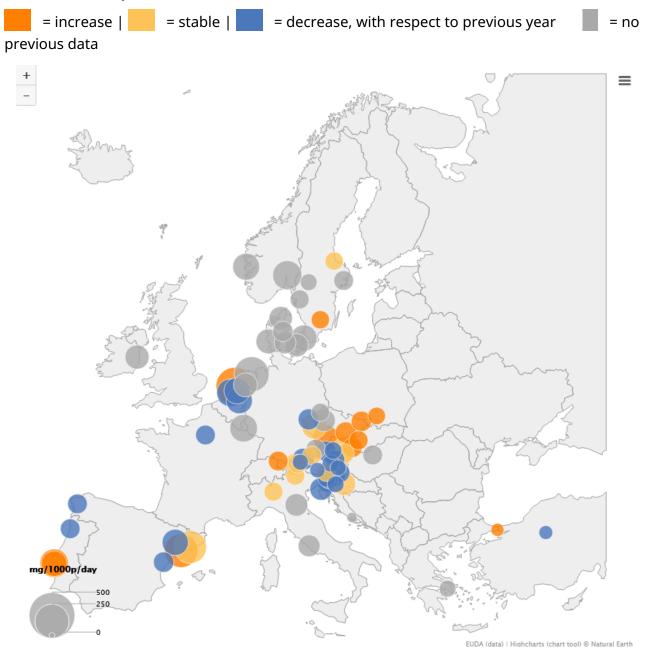
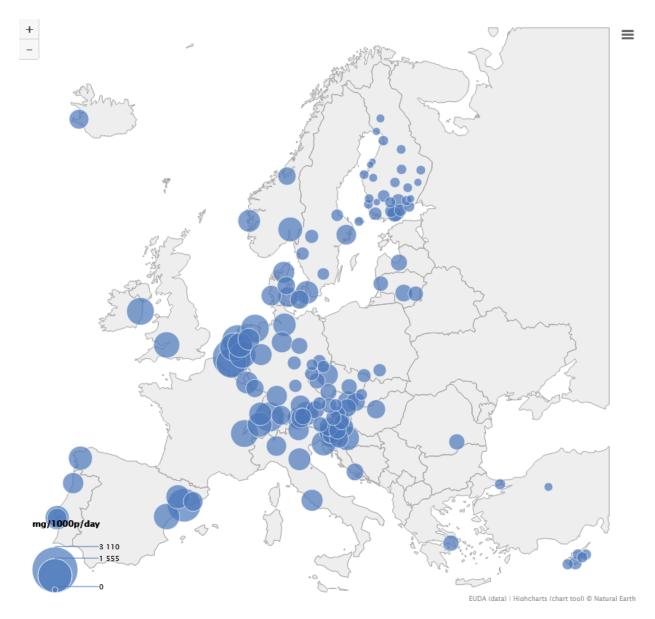



Figure 1. Relative geographical distribution of cannabis metabolite as detected in European cities, 2024 (daily mean)


Figure 2: Changes in the mean weekly cannabis metabolites from wastewater analyses in selected European cities between 2023 and 2024

Cocaine

The BE loads observed in wastewater indicate that cocaine use remains highest in western and southern European cities, in particular in cities in Belgium, the Netherlands and Spain. Low levels were found in the majority of the eastern European cities, but the most recent data continues to show signs of increases. When comparing to study locations outside the European Union, cities in Brazil, Chile, Switzerland show similar levels of use as the cities in Europe with the highest loads.

Figure 3: Relative geographical distribution of cocaine metabolite as detected in European cities, 2024 (daily mean)

A relatively stable picture of cocaine use was observed between 2011 and 2015 in most cities. 2016 marked a turning point, with increases observed in the majority of cities each year since then. The 2024 data revealed further increases in cocaine residues in most cities when compared to 2023 data, with 39 out of 72 cities reporting an increase, while 16 cities reported no change and 17 cities reported a decrease. An overall increase is seen for all 10 cities with data for both 2011 and 2024.

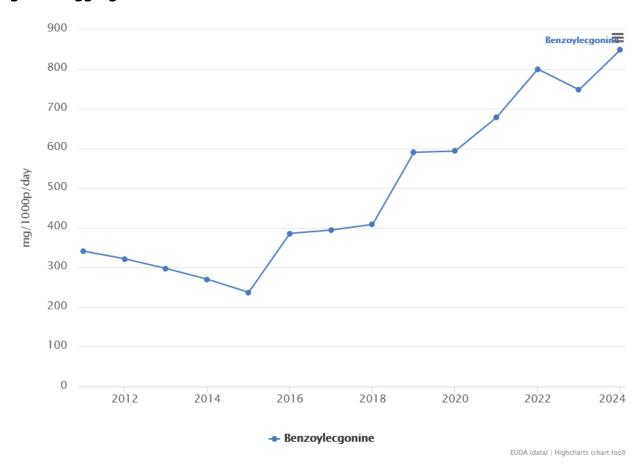
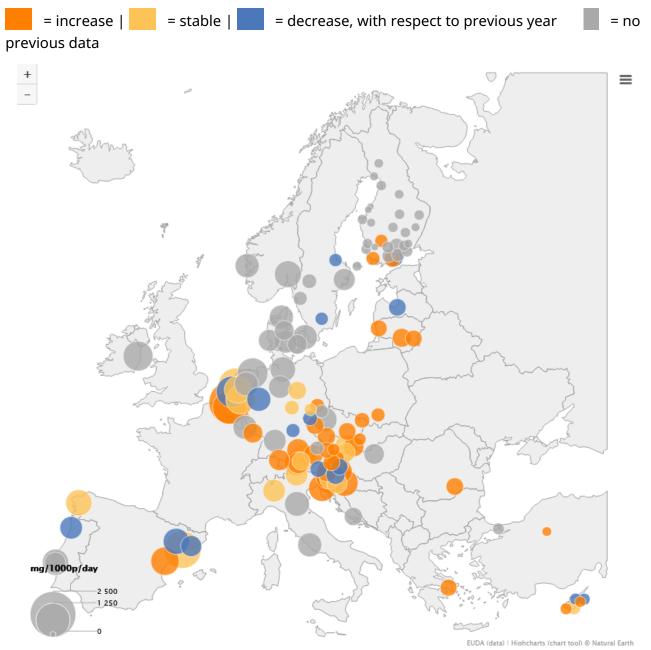
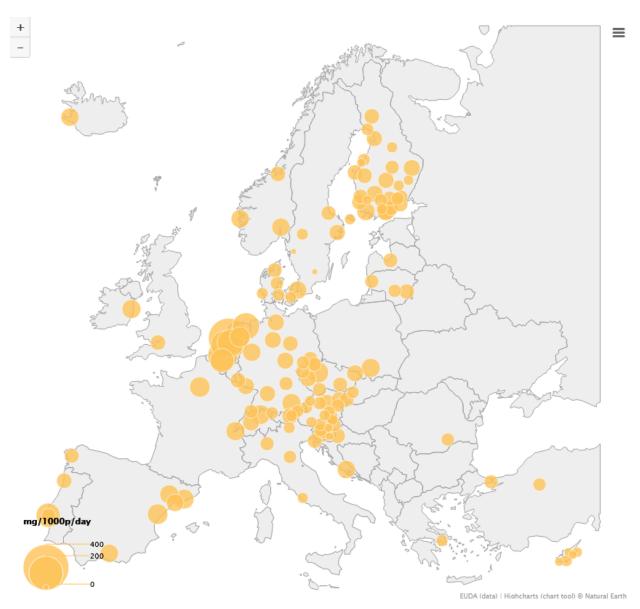



Figure 4: Aggregated trends in cocaine residues in 7 EU cities, 2011 to 2024

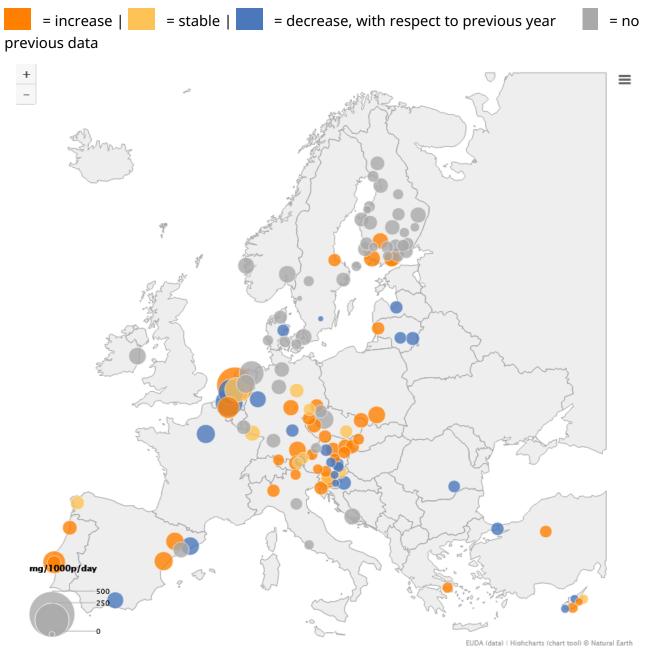
NB: Trends in mean daily amounts of benzoylecgonine in milligrams per 1 000 head of population in Antwerp Zuid (Belgium) Zagreb (Croatia), Milan (Italy), Eindhoven and Utrecht (Netherlands), Castellon and Santiago (Spain). These 7 cities were selected owing to the availability of annual data from 2011 to 2024.

Figure 5: Changes in the mean weekly cocaine metabolites from wastewater analyses in selected European cities between 2023 and 2024



Contrary to 2023, in around two thirds of the countries with multiple study locations, there were marked differences found when comparing large cities to smaller locations, with the loads (amounts of BE found in a location per 1000 people) being higher in larger cities. In addition to geographical patterns, wastewater analysis can detect fluctuations in weekly patterns of illicit drug use. More than three quarters of cities show higher loads of BE in wastewater during the weekend (Friday to Monday) than during weekdays, which may reflect a pattern of more recreational use.

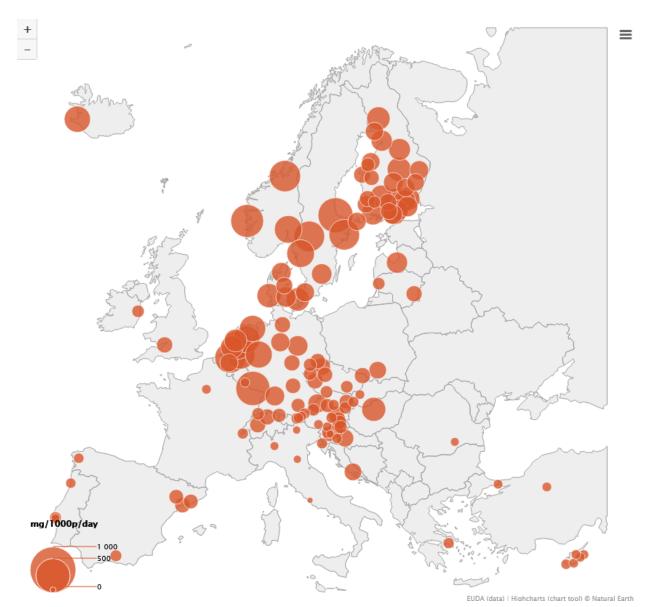
MDMA


The highest mass loads of MDMA were found in the wastewater in cities in Belgium, Czechia, the Netherlands and Portugal. Where data is available, when comparing to study locations outside the European Union, only cities in New Zealand show similar levels of use as the cities in Europe with the highest loads, while all the other locations show low levels of MDMA use.

General population surveys in many countries showed that MDMA prevalence was declining from peak levels attained in the early to mid-2000s. In recent years, however, the picture has remained mixed with no clear trends. Where prevalence is high, this may reflect MDMA no longer being a niche or subcultural drug limited to dance clubs and parties, but now being used by a broader range of young people in mainstream nightlife settings, including bars and house parties.

Figure 7: Changes in the mean weekly MDMA metabolites from wastewater analyses in selected European cities between 2023 and 2024

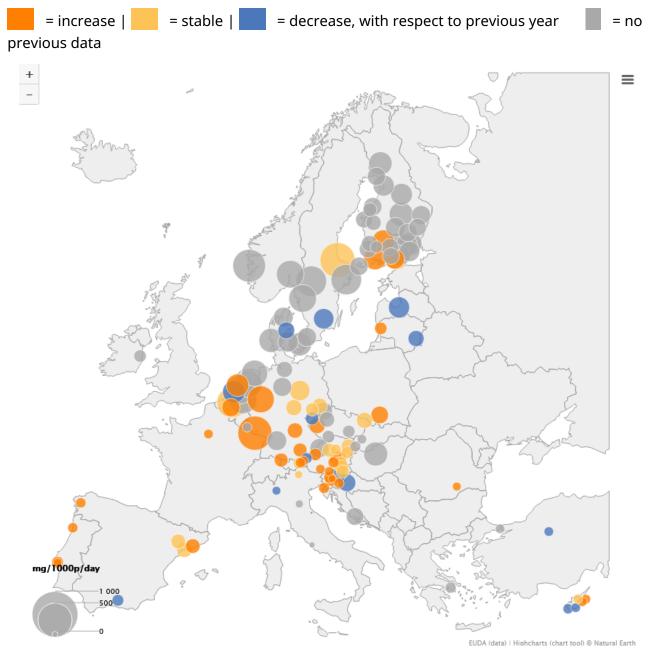
Looking at longer-term trends in wastewater analysis, in most cases the loads of MDMA increased between 2011-16, and have fluctuated after this. In 2020, possibly due to the fact that in the majority of countries nightlife was largely closed for long periods, almost half of the cities (24 of 49) reported a decrease with 18 reporting an increase. In 2021, 38 out of 58 cities, reported a decrease. In 2022, 28 out of 62 cities reported an increase and 27 a decrease. In 2023, 42 out of the 69 cities reported an increase, 11 a stable situation and 16 a decrease. Of the 76 cities that have data on MDMA residues in municipal wastewater for 2023 and 2024, 41 cities reported an increase (with no clear geographical pattern), 11 a stable situation and 24 a decrease (mostly in cities in central Europe and in the Baltic region).

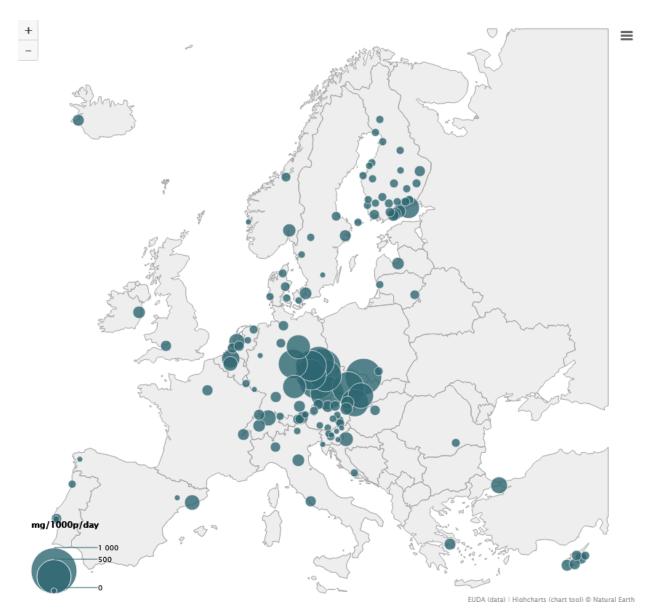

As in 2023, and contrary to previous years, in most countries with multiple study locations, no marked differences were found when comparing large cities to smaller locations. More than

three quarters of cities showed higher loads of MDMA in wastewater during the weekend (Friday to Monday) than during weekdays, reflecting the predominant use of ecstasy in recreational settings.

Amphetamine and methamphetamine

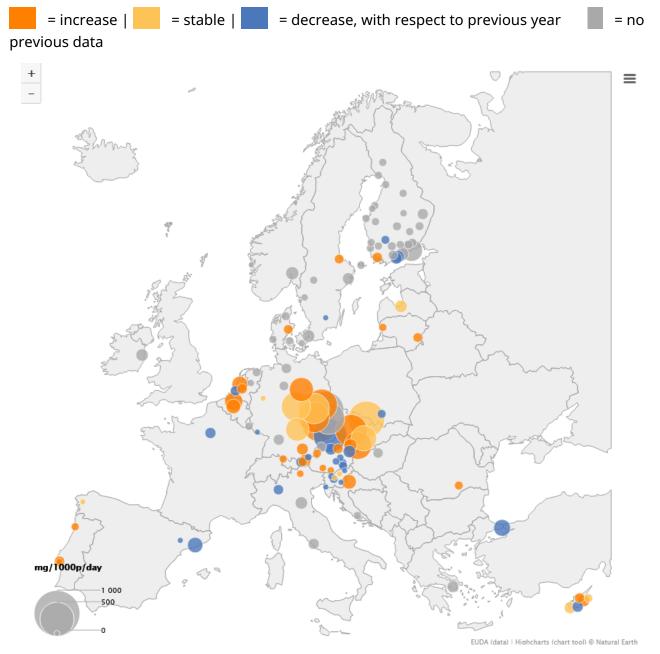
Amphetamine and methamphetamine, two closely related stimulants, are both consumed in Europe, although amphetamine is much more commonly used. Methamphetamine consumption has historically been restricted to Czechia and, more recently, Slovakia, although recent years have seen increases in use in other countries.


The loads of amphetamine detected in wastewater varied considerably across study locations, with the highest levels reported in cities in the north and east of Europe. The highest loads were found in cities in Sweden, Germany, Norway, Belgium and the Netherlands. Amphetamine was found at much lower levels in cities in the south of Europe, although the most recent data shows some signs of increase.


Figure 8. Relative geographical distribution of amphetamine residues as detected in European cities, 2024 (daily mean)

To examine the data, use the data explorer, also available on this page. Underlying data is available in source data.

Figure 9: Changes in the mean weekly amphetamine metabolites from wastewater analyses in selected European cities between 2023 and 2024



In contrast, methamphetamine use, generally low and historically concentrated in Czechia and Slovakia, also appears to be present in Germany, the Netherlands, Belgium, Finland, Türkiye, Croatia and Spain. The observed methamphetamine loads in the other locations were low, with the most recent data showing signals of increases in central European cities. Figure 10. Relative geographical distribution of methamphetamine residues as detected in European cities, 2024 (daily mean)

Overall, the data related to amphetamine and methamphetamine from the 11 monitoring campaigns showed no major changes in the general patterns of use observed, although since 2021 increases were observed in several cities for both substances in regions where use has traditionally been low to negligible. Of the 68 cities with data on amphetamine residues for both 2023 and 2024, 34 reported an increase of the loads of amphetamine found in 2024, 14 a decrease and 20 remain stable. Of the 71 cities that had data on methamphetamine residues in municipal wastewater for 2023 and 2024, 32 showed an increase, 12 a stable situation and 27 a decrease.

Figure 11: Changes in the mean weekly methamphetamine metabolites from wastewater analyses in selected European cities between 2023 and 2024

In 2024, around 60% of cities show higher loads of amphetamine and methamphetamine during weekdays than during the weekend (Friday to Monday), possibly reflecting the use of these drugs by a more frequent user group.

Ketamine

In 2024, relatively low levels of ketamine residues in municipal wastewater were reported by 82 cities. Of the 42 cities that have data on ketamine residues for 2023 and 2024, 14 reported an increase, 15 a stable situation and 13 a decrease. The highest mass loads were detected in cities in Belgium, the Netherlands, Hungary and Norway.

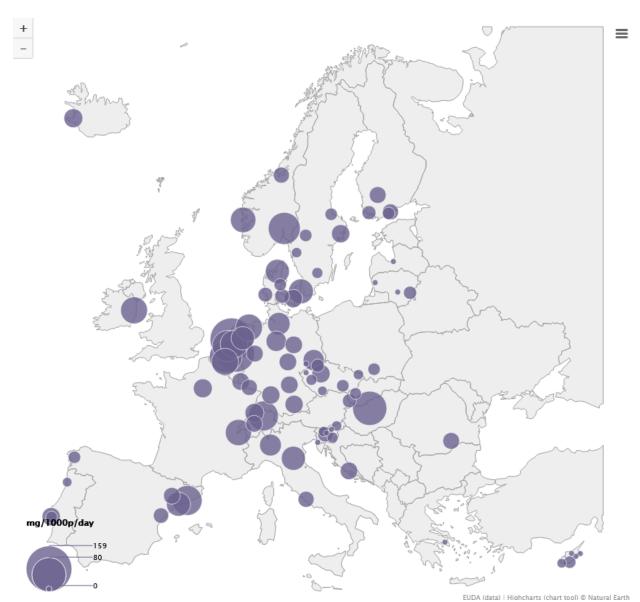
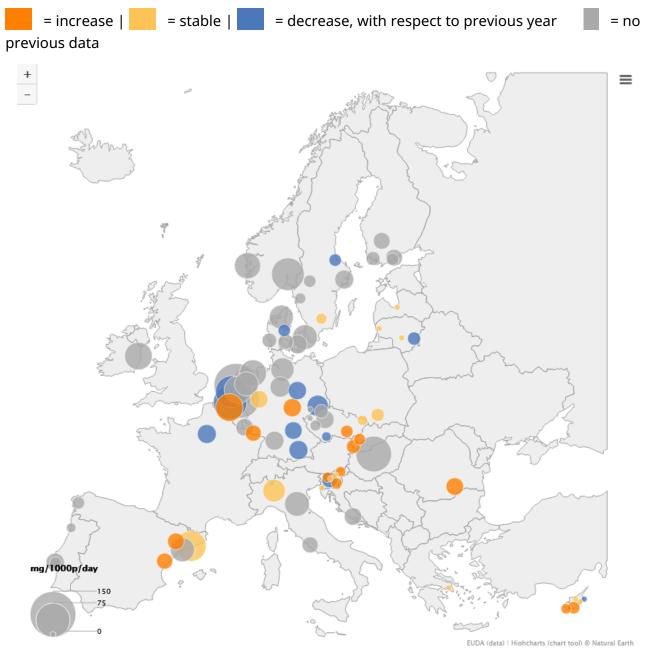



Figure 12. Relative geographical distribution of ketamine residues as detected in European cities, 2024 (daily mean)

More than three quarters of cities showed higher loads of ketamine in wastewater during the weekend (Friday to Monday) than during weekdays, reflecting the predominant use of ketamine in recreational settings.

Figure 13: Changes in the mean weekly ketamine metabolites from wastewater analyses in selected European cities between 2023 and 2024

Limitations of this method

Wastewater analysis offers an interesting complementary data source for monitoring the quantities of illicit drugs used at the population level, but it cannot provide information on prevalence and frequency of use, main classes of users and purity of the drugs. Additional challenges arise from uncertainties associated with the behaviour of the selected biomarkers in the sewer, different back-calculation methods and different approaches to estimate the size of the population being tested (Castiglioni et al., 2013, 2016; EMCDDA, 2016b; Lai et al., 2014). The caveats in selecting the analytical targets for heroin, for example, make monitoring this drug in wastewater more complicated compared to other substances (Been et al., 2015). Also, the purity of street products fluctuates unpredictably over time and in

different locations. Furthermore, translating the total consumed amounts into the corresponding number of average doses is complicated, as drugs can be taken by different routes and in amounts that vary widely, and purity levels fluctuate (Zuccato et al., 2008).

Wastewater-based epidemiology consists of several consecutive steps that allow researchers to identify and quantify target metabolic residues of illicit drugs in raw wastewater and backcalculate the amount of the corresponding illicit drugs consumed by the population served by the wastewater treatment plant. It is important to note that for some cities wastewater samples are not fully representative of drug use for the entire population of that city.

Efforts are being made to enhance wastewater monitoring approaches. For example, work has been undertaken on overcoming a major source of uncertainty related to estimating the number of people present in a sewer catchment at the time of sample collection. This involved using data from mobile devices to better estimate the dynamic population size for wastewater-based epidemiology (Thomas et al., 2017).

Terms and definitions

In addition to the glossary below, see also <u>Frequently-asked questions on wastewater-based</u> epidemiology and drugs.

Back-calculation

Back-calculation is the process whereby researchers calculate/estimate the consumption of illicit drugs in the population based on the amounts of the target drug residue entering the wastewater treatment plant.

LC-MS/MS

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is the analytical method most commonly used to quantify drug residues in wastewater. LC-MS/MS is an analytical chemistry technique that combines the separation techniques of liquid chromatography with the analysis capabilities of mass spectrometry. Considering the complexity and the low concentrations expected in wastewater, LC-MS/MS is one of the most powerful techniques for this analysis, because of its sensitivity and selectivity.

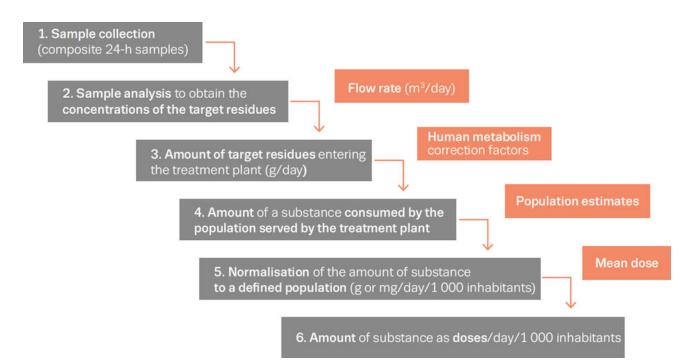
Metabolite

Traces of drugs consumed will end up in the sewer network either unchanged or as a mixture of metabolites. Metabolites, the end products of metabolism, are the substances produced when the body breaks drugs down.

Residue

Wastewater analysis is based on the fact that we excrete traces in our urine of almost everything we consume, including illicit drugs. The target drug residue is what remains in the wastewater after excretion and is used to quantify the consumption of illicit drugs in the population.

Urinary biomarkers


Analytical chemists look for urinary biomarkers (measurable characteristics to calculate population drug use) in wastewater samples, which can be the parent drug (i.e. the primary substance) or its urinary metabolites.

Enantiomeric profiling

Enantiomeric profiling is an analytical chemistry technique used to determine if studied drugs in wastewater originate from consumption or direct disposal (eq. production waste). It is based on the fact that chiral molecules (if only one chiral centre is present) exist as two enantiomers (opposite forms) which are non-superimposable mirror images of each other. As the enantiomeric ratio will change after human metabolism, the enantiomeric fraction can be used to determine whether the studied drugs in wastewater originate from consumption.

Methods and ethical considerations

In order to estimate levels of drug use from wastewater, researchers attempt first to identify and quantify drug residues, and then to back-calculate the amount of the illicit drugs used by the population served by the sewage treatment plants (Castiglioni et al., 2014). This approach involves several steps (see figure). Initially, composite samples of untreated wastewater are collected from the sewers in a defined geographical area. The samples are then analysed to determine the concentrations of the target drug residues. Following this, the drug use is estimated through back-calculation by multiplying the concentration of each target drug residue (nanogram/litre) with the corresponding flow of sewage (litre/day). A correction factor for each drug is taken into account as part of the calculation. In a last step, the result is divided by the population served by the wastewater treatment plant, which shows the amount of a substance consumed per day per 1 000 inhabitants. Population estimates can be calculated using different biological parameters, census data, number of house connections, or the design capacity, but the overall variability of different estimates is generally very high.

Although primarily used to study trends in illicit drug consumption in the general population, wastewater analysis has also been applied to small communities, including workplaces, schools (Zuccato et al., 2017), music festivals, prisons (Nefau et al., 2017) and specific neighbourhoods (Hall et al., 2012).

Using this method in small communities can involve ethical risks (Prichard et al., 2014), such as possible identification of a particular group within the community.

In 2016 the SCORE group published ethical guidelines for wastewater-based epidemiology and related fields (Prichard et al., 2016). The objective of these guidelines is to outline the main potential ethical risks for wastewater research and to propose strategies to mitigate those risks. Mitigating risks means reducing the likelihood of negative events and/or minimising the consequences of negative events.

References

Archer, J. R. H., Dargan, P. I., Hudson, S. and Wood, D. M. (2013a), 'Analysis of anonymous pooled urinals in central London confirms the significant use of novel psychoactive substances', *QJM* 106(2), pp. 147–152.

Archer, J. R. H., Hudson, S., Wood, D. M. and Dargan, P. I. (2013b), 'Analysis of urine from pooled urinals: A novel method for the detection of novel psychoactive substances', *Current Drug Abuse Reviews* 6(2), pp. 86–90.

Archer, J. R. H., Hudson, S. and Jackson, O. (2015), 'Analysis of anonymized pooled urine in nine UK cities: variation in classical recreational drug, novel psychoactive substance and anabolic steroid use', *QJM*, 108 (12), pp. 929–933.

Bade, R., Bijlsma, L., Sancho, J. et al. (2017), 'Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities', *Chemosphere* 168, pp.10321–10041.

Baz-Lomba, J. A., Salvatore, S., Gracia-Lor, E., et al. (2016), 'Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities', *BMC Public Health* 16(1), 1035.

Baz-Lomba, J. A., Harman, C., Reid, M. and Thomas, K. V. (2017), 'Passive sampling of wastewater as a tool for the long-term monitoring of community exposure: Illicit and prescription drug trends as a proof of concept', *Water Research* 121, pp. 221–230.

Been, F., Benaglia, L., Lucia, S., et al. (2015), 'Data triangulation in the context of opioids monitoring via wastewater analyses', *Drug and Alcohol Dependence* 151, pp. 203–210.

Bijlsma, L., Burgard, D., Been, F., et al. (2020), 'The estimation of cannabis consumption through wastewater analysis', *Comprehensive Analytical Chemistry*, 90, pp. 453–482.

Boogaerts, T., Covaci, A., Kinyua, J., et al. (2016), 'Spatial and temporal trends in alcohol consumption in Belgian cities: A wastewater-based approach', *Drug and Alcohol Dependence* 160, pp. 170–176.

Castiglioni, S., Bijlsma, L., Covaci, A., et al. (2013), 'Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers', *Environmental Science and Technology* 47(3), pp. 1452–1460.

Castiglioni, S., Thomas, K. V., Kasprzyk-Hordern, B., Vandam, L. and Griffiths, P. (2014), 'Testing wastewater to detect illicit drugs: State of the art, potential and research needs', *Science of the Total Environment* 487, pp. 613–620.

Castiglioni, S., Borsotti, A., Riva, F. and Zuccato, E. (2016), 'Illicit drug consumption estimated by wastewater analysis in different districts of Milan: A case study', *Drug and Alcohol Review* 35, pp. 128–132.

Causanilles, A., Baz-Lomba, J. A., Burgard, D. A., et al. (2017a), 'Improving wastewater-based epidemiology to estimate cannabis use: Focus on the initial aspects of the analytical procedure', *Analytica Chimica Acta* 988, pp. 27–33.

Causanilles, A., Kinyua, J., Ruttkies, C., et al. (2017b), 'Qualitative screening for new psychoactive substances in wastewater collected during a city festival using liquid chromatography coupled to high-resolution mass spectrometry', *Chemosphere* 184, pp. 1186–1193.

Daughton, C. G. (2001), 'Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry: Pharmaceuticals in the environment', *American Society for Mass Spectrometry* 12, pp. 1067–1076.

EMCDDA (2016), <u>Assessing illicit drugs in wastewater: Advances in wastewater-based drug</u> <u>epidemiology</u>, Publications Office of the European Union, Luxembourg. EMCDDA and Europol (2016), *EU Drug Markets Report*, Publications Office of the European Union, Luxembourg.

European Monitoring Centre for Drugs and Drug Addiction (2024), <u>European Drug Report</u> 2024: Trends and Developments.

Emke, E., Evans, S., Kasprzyk-Hordern, B. and de Voogt, P. (2014), 'Enantiomer profiling of high loads of amphetamine and MDMA in communal sewage: A Dutch perspective', *Science of the Total Environment* 487, pp. 666–672.

Emke, E., Vughs, D., Kolkman, A. and de Voogt, P. (2018), 'Wastewater-based epidemiology generated forensic information: amphetamine synthesis waste and the impact on a small sewage treatment plant', *Forensic Science International* 286, e1–e7.

González-Mariño, I., Gracia-Lor, E., Rousis, N., et al. (2016), 'Wastewater-based epidemiology to monitor synthetic cathinones use in different European countries', *Environmental Science and Technology* 50, pp.10089-10096.

Hall, W., Prichard,J., Kirkbride P., Bruno, R., Thai, P. K., Gartner, C. et al. (2012), 'An analysis of ethical issues in using wastewater analysis to monitor illicit drug use', *Addiction* 107(10),pp. 1767–1773

Kasprzyk-Hordern, B., Bijlsma, L., Castiglioni, S., et al. (2014), 'Wastewater-based epidemiology for public health monitoring', *Water and Sewerage Journal* 4, pp. 25–26.

Kinyua, J., Negreira, N., Miserez, B., et al. (2016), 'Qualitative screening of new psychoactive substances in pooled urine samples from Belgium and United Kingdom', *Science of the Total Environment* 573, pp. 1527–1535.

Krizman-Matasic, I., Kostanjevecki, P., Ahel, M. and Terzic, S. (2018), 'Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography-tandem mass spectrometry', *Journal of Chromatography A* 19, pp.102–111.

Lai, F. Y., Anuj, S., Bruno, R., et al. (2014), 'Systematic and day-to-day effects of chemicalderived population estimates on wastewater-based drug epidemiology', *Environmental Science and Technology* 49, pp. 999–1008.

Mackuľak, T., Brandeburová, P., Grenčíková, A., Bodík, I., Staňová, A. V., Golovko, O., Koba, O., Mackuľaková, M., et al. (2019), 'Music festivals and drugs: Wastewater analysis', *Science of the Total Environment* 659, pp. 326–334.

Mardal, M., Kinyua, J., Ramin, P., et al. (2017), 'Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques', *Drug Testing and Analysis* 9, pp. 1061–1014.

Mastroianni, N., López-García, E., Postigo, C., et al. (2017), 'Five-year monitoring of 19 illicit and legal substances of abuse at the inlet of a wastewater treatment plant in Barcelona (NE Spain) and estimation of drug consumption patterns and trends', *Science of the Total Environment* 609, pp. 916–926. Néfau, T., Sannier, O., Hubert, C., Karolak, S. and Lévi, Y. (2017), *Analysis of drugs in sewage: an approach to assess substance use, applied to a prison setting*, Observatoire Français des Drogues et des Toxicomanies, Paris.

Prichard, J., Hall, W., de Voogt, P. and Zuccato, E. (2014), 'Sewage epidemiology and illicit drug research: the development of ethical research guidelines', *Science of the Total Environment* 47(2), pp. 550–555.

Prichard, J., Hall, W., Zuccato, E., de Voogt, P., Voulvoulis, N., Kummerer, K., Kasprzyk-Hordern, B., et al. (2016), 'Ethical research guidelines for wastewater-based epidemiology and related fields' (<u>www.emcdda.europa.eu/drugs-library/ethical-research-guidelines-wastewater-based-epidemiology-and-related-fields_en</u>).

Reid, M. J., Baz-Lomba, J. A., Ryu, Y. and Thomas, K. V. (2014), 'Using biomarkers in wastewater to monitor community drug use: A conceptual approach for dealing with new psychoactive substances', *Science of the Total Environment* 487, pp. 651–658.

Rodríguez-Álvarez, T., Racamonde, I., González-Mariño, I., et al. (2015), 'Alcohol and cocaine co-consumption in two European cities assessed by wastewater analysis', *Science of the Total Environment* 536, pp. 91–98.

Senta, I., Gracia-Lor, M., Borsotti, A., et al. (2015), 'Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment', *Water Research* 74, pp. 23–33.

Thomaidis, N., Gago-Ferrero, P., Ort, C., et al. (2016), 'Reflection of socioeconomic changes in wastewater: licit and illicit drug use patterns', *Environmental Science and Technology* 50(18), pp.10065–10072.

Thomas, K. V., Bijlsma, L., Castiglioni, S., et al. (2012), 'Comparing illicit drugs use in 19 European cities through sewage analysis', *Science of the Total Environment* 432, pp. 432–439.

Thomas, K. V., Amador, A., Baz-Lomba, J. A. and Reid, M. (2017), 'Use of mobile device data to better estimate dynamic population size for wastewater-based epidemiology', *Environmental Science and Technology* 51(19), pp.11363–11370.

van Nuijs, A., Mougel, J.-F., Tarcomnicu, I., et al. (2011), 'Sewage epidemiology: A real-time approach to estimate the consumption of illicit drugs in Brussels, Belgium', *Environment International* 27, pp. 612–621.

van Nuijs, A., Lai, Y., Been, F., et al. (2018), 'Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: Development of a quality control system', *Trends in Analytical Chemistry* 103, pp. 34–43.

van Wel, J. H. P., Gracia-Lor, E., van Nuijs, A. L. N., et al. (2016), 'Investigation of agreement between wastewater-based epidemiology and survey data on alcohol and nicotine use in a community', *Drug and Alcohol Dependence* 162, pp. 170–175.

Yang, Z., Anglès d'Auriac, M., Goggins, S., et al. (2015), 'A novel DNA biosensor using a ferrocenyl intercalator applied to the potential detection of human population biomarkers in

wastewater', *Environmental Science and Technology* 49(9), pp. 5609–5617.

Zuccato, E., Chiabrando, C., Castiglioni, S., Bagnati, R. and Fanelli, R. (2008), 'Estimating community drug abuse by wastewater analysis', *Environmental Health Perspectives* 116(8), pp. 1027–1032.

Zuccato, E., Castiglioni, S., Senta, I., Borsotti, A., et al. (2016), 'Population surveys compared with wastewater analysis for monitoring illicit drug consumption in Italy in 2010–2014', *Drug and Alcohol Dependence* 161, pp. 178–188.

Zuccato, E., Gracia-Lor, E., Rousis, N. I., Parabiaghi, A., Senta, I., Riva, F. and Castiglioni, S. (2017), 'Illicit drug consumption in school populations measured by wastewater analysis', *Drug and Alcohol Dependence* 178, pp. 2852–2890.

Find out more

- Wastewater and drugs topic hub
- Frequently-asked questions on wastewater-based epidemiology and drugs
- <u>Assessing illicit drugs in wastewater: Advances in wastewater-based drug epidemiology</u> (2016)
- Wastewater-based drug epidemiology explainer video

General notes on the data

- **Population-normalised loads:** All values indicate the amount of drug residues quantified in raw sewage. No values were corrected with excretion factors.
- Cities with multiple sewage treatment plants (STPs): The numbers or letters in brackets specify the STPs, which provided data for the corresponding city in this study. For example, Berlin (4) indicates the population-weighted average of four different STPs in the city of Berlin.
- Values below limit of quantification: Values below the method limit of quantification are indicated as zero.
- Weekday means are averages of Tuesdays, Wednesdays and Thursdays.
- Weekend means are averages of Fridays, Saturdays, Sundays and Mondays.
- Usually, there is at least one sample taken on each weekday. In case data is missing for a day, the averages are calculated over non-missing observations.

Using the data

- The data may be re-used in your own work provided the source (EUDA and SCORE) are acknowledged.
- In addition to data values, a site information table is provided with information on the treatment plants where the measurements were made. Each site is identified with a unique arbitrary ID ('SiteID'), which provides information on the location of the site, the institution responsible and the approximate population served (the population values presented are indicative only and not necessarily the ones used at the time of the collection). This ID is referred to in each data table.

Substance-specific notes

- Benzoylecgonine: this is the main excreted metabolite of cocaine.
- **THC-COOH:** this is the main excreted metabolite of cannabis.

Site-specific notes

• Results in Bologna and Rome (Italy) were provided thanks to funding by Dipartimento Politiche Antidroga

You can download the <u>source data for drugs in wastewater in cities from our our data</u> catalogue or use the links below to directly download the CSV files.

Download all files (zip)

- Table 1 (ww2025-site-info-table.csv)
- Table 2 (ww2025-all-data.csv)
- Table 3 (ww2025-aggregated-trends.csv)
- Table 4 (ww2025-changes-all-substances.csv)

Open Toolbox (quickly press CTRL twice)

This PDF was generated automatically on 19/03/2025 from the web page located at this address: https://www.euda.europa.eu/publications/html/pods/waste-water-analysis_en. Some errors may have occurred during this process. For the authoritative and most recent version, we recommend consulting the web page.