

CH-FUBIATA

Sample Type: Drug Material

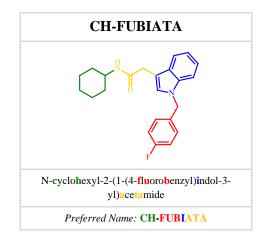
Latest Revision: June 21, 2022 Date Received: May 10, 2022 Date of Report: June 21, 2022

1. GENERAL INFORMATION

IUPAC Name:	N-cyclohexyl-2-[1-[(4-fluorophenyl)methyl]indol-3-yl]acetamide
InChI String:	InChI=1S/C23H25FN2O/c24-19-12-10-17(11-13-19)15-26-16- 18(21-8-4-5-9-22(21)26)14-23(27)25-20-6-2-1-3-7-20/h4-5,8- 13,16,20H,1-3,6-7,14-15H2,(H,25,27)
CFR:	Not Scheduled (06/2022)
CAS#	922038-77-5
Synonyms:	CH-FUBIACA
Source:	Philadelphia Department of Public Health
Appearance:	Plant-Like Material

Important Note: All identifications were made based on evaluation of analytical data (GC-MS and LC-QTOF-MS) in comparison to analysis of acquired reference material.

Prepared By: Alex J. Krotulski, PhD; Jennifer Shinefeld, MS; Melissa F. Fogarty, MSFS, D-ABFT-FT; Joshua DeBord, PhD; and Barry K. Logan, PhD, F-ABFT


2. CHEMICAL AND PHYSICAL DATA

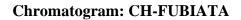
2.1 CHEMICAL DATA

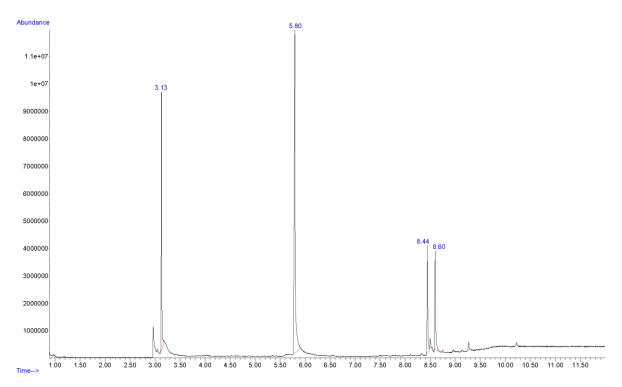
Form	Chemical	Molecular	Molecular Ion	Exact Mass
	Formula	Weight	[M ⁺]	[M+H] ⁺
Base	$C_{23}H_{25}FN_2O$	364.5	364	365.2024

3. BRIEF DESCRIPTION

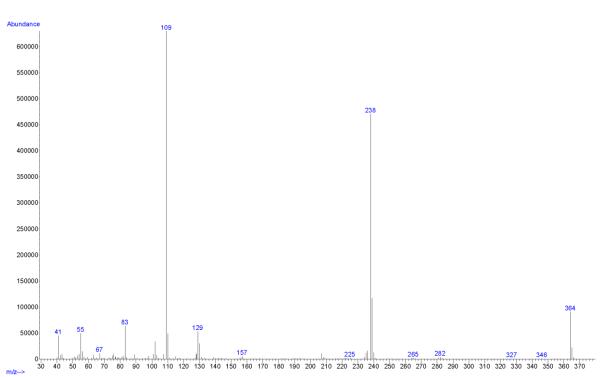
CH-FUBIATA is classified as a synthetic cannabinoid. Synthetic cannabinoids have been reported to cause psychoactive effects similar to delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids have caused adverse events, including deaths, as described in the literature. Little to no information is currently known about the activity, potency, and/or toxicity of CH-FUBIATA. New synthetic cannabinoids continue to emerge among the recreation drug supply internationally, seemingly as replacements after a synthetic cannabinoid class-wide ban implemented by China in July 2021 which included most traditional indole and indazole structural scaffolds.¹ Many of these new synthetic cannabinoid analogues are unstudied with pharmacological and human effects undetermined. Structurally similar synthetic cannabinoids include <u>CH-PIATA</u> (reported April 2022) and <u>ADB-FUBIATA</u> (reported November 2021); CH-FUBIATA was identified alongside ADB-FUBIATA in the sample reported. Currently, CH-FUBIATA and related analogues are not scheduled substances in the United States.

4. ADDITIONAL RESOURCES


1. Cui-Mei Liu, Zhen-Dong Hua, Wei Jia, Tao Li. (2021) Identification of AD-18, 5F-MDA-19, and pentyl MDA-19 in seized materials after the class-wide ban of synthetic cannabinoids in China. *Drug Test Anal*. <u>https://doi.org/10.1002/dta.3185</u>

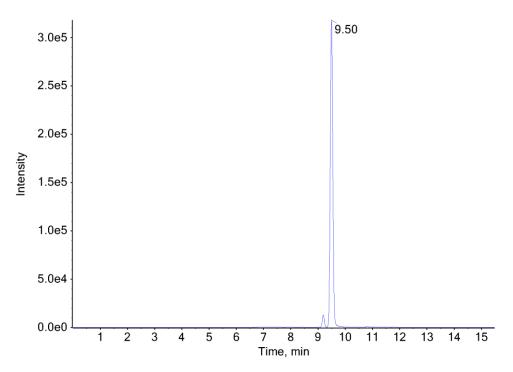

https://www.caymanchem.com/product/37054/ch-fubiata

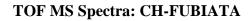
5. QUALITATIVE DATA

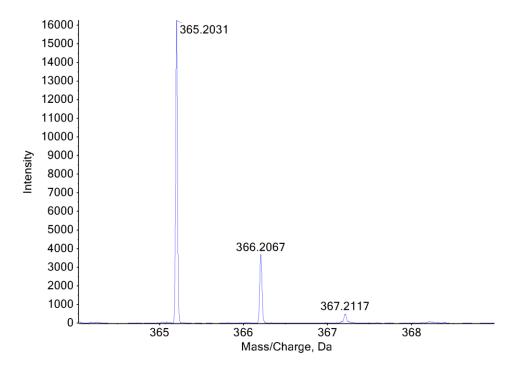

5.1 GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC-MS)

Testing Performed At:	The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation (Willow Grove, PA)
Sample Preparation:	Dilution in methanol
Instrument:	Agilent 5975 Series GC/MSD System
Column:	Agilent J&W DB-1 (12 m x 200 µm x 0.33 µm)
Carrier Gas:	Helium (Flow: 1.46 mL/min)
Temperatures:	Injection Port: 265 °C
	Transfer Line: 300 °C
	MS Source: 230 °C
	MS Quad: 150 °C
	Oven Program: 50 °C for 0 min, 30 °C/min to 340 °C for 2.3 min
Injection Parameters:	Injection Type: Splitless
	Injection Volume: 1 µL
MS Parameters:	Mass Scan Range: 40-550 m/z
	Threshold: 250
Retention Time:	8.44 min
Standard Comparison:	Reference material for CH-FUBIATA (Batch: 0649511-1) was purchased from Cayman Chemical (Ann Arbor, MI, USA). Analysis of this standard resulted in positive identification of the analyte in the exhibit as CH-FUBIATA based on retention time (8.43 min) and mass spectral data. (https://www.caymanchem.com/product/37054/ch-fubiata)

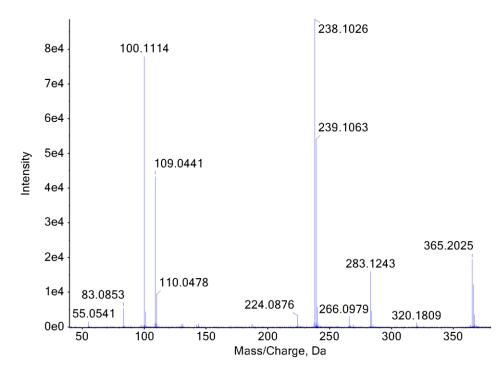
Additional peaks in chromatogram: internal standards (3.13 and 5.80 mins) & ADB-FUBIATA (8.60 min)


EI (70 eV) Mass Spectrum: CH-FUBIATA


Page 4 of 7


5.2 LIQUID CHROMATOGRAPHY QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-QTOF)

Testing Performed At:	The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation (Willow Grove, PA)	
Sample Preparation:	Dilution in methanol followed by 1:100 dilution of GC-MS sample in mobile phase (CFSRE)	
Instrument:	Sciex TripleTOF® 5600+, Shimadzu Nexera XR UHPLC	
Column:	Phenomenex® Kinetex C18 (50 mm x 3.0 mm, 2.6 µm)	
Mobile Phase:	A: Ammonium formate (10 mM, pH 3.0)	
	B: Methanol/acetonitrile (50:50)	
	Flow rate: 0.4 mL/min	
Gradient:	Initial: 95A:5B; 5A:95B over 13 min; 95A:5B at 15.5 min	
Temperatures:	Autosampler: 15 °C	
	Column Oven: 30 °C	
	Source Heater: 600 °C	
Injection Parameters:	Injection Volume: 10 µL	
QTOF Parameters:	TOF MS Scan Range: 100-510 Da	
	Precursor Isolation: SWATH® acquisition (27 windows)	
	Fragmentation: Collison Energy Spread (35±15 eV)	
	MS/MS Scan Range: 50-510 Da	
Retention Time:	9.50 min	
Standard Comparison:	Reference material for CH-FUBIATA (Batch: 0649511-1) was purchased from Cayman Chemical (Ann Arbor, MI, USA). Analysis of this standard resulted in positive identification of the analyte in the exhibit as CH-FUBIATA based on retention time (9.51 min) and mass spectral data. (https://www.caymanchem.com/product/37054/ch-fubiata)	


Extracted Ion Chromatogram: CH-FUBIATA

TOF MS/MS Spectra: CH-FUBIATA

6. FUNDING

NPS Discovery at the Center for Forensic Science Research and Education (CFSRE) is supported in part by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice (Award Number 2020-DQ-BX-0007, "Real-Time Sample-Mining and Data-Mining Approaches for the Discovery of Novel Psychoactive Substances (NPS)"). The opinions, findings, conclusions and/or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice.